natural logarithm

오일러수(네이피어수)

$$ \lim_{n \to \infty} \left( 1 + \frac{1}{x} \right)^n $$

$$ \lim_{n \to 0} \left( 1 + {x} \right)^\frac{1}{n} $$

import numpy as np
print(np.e)

$$ y = e^x $$

import numpy as np
print(np.exp(2)) # e의 제곱

그래프 확인

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

x = np.linspace(-2, 2)
y = np.exp(x)  # 네이피어수의 거듭제곱

plt.plot(x, y)

plt.xlabel("x", size=14)
plt.ylabel("y", size=14)
plt.grid()

plt.show()

자연로그

$$ y = a^x, x = \log_{a} y $$

$$ y = e^x, x = \log_{e} y $$

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0.01, 2)  # x를 0으로 할 수는 없다
y = np.log(x)  # 자연대수

plt.plot(x, y)

plt.xlabel("x", size=14)
plt.ylabel("y", size=14)
plt.grid()

plt.show()